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A depth-averaged debris-flow
model that includes the effects
of evolving dilatancy. I.
Physical basis
Richard M. Iverson and David L. George

US Geological Survey, 1300 SE Cardinal Ct. Vancouver, WA 98683,
USA

To simulate debris-flow behaviour from initiation
to deposition, we derive a depth-averaged, two-
phase model that combines concepts of critical-state
soil mechanics, grain-flow mechanics and fluid
mechanics. The model’s balance equations describe
coupled evolution of the solid volume fraction,
m, basal pore-fluid pressure, flow thickness and
two components of flow velocity. Basal friction is
evaluated using a generalized Coulomb rule, and
fluid motion is evaluated in a frame of reference that
translates with the velocity of the granular phase, vs.
Source terms in each of the depth-averaged balance
equations account for the influence of the granular
dilation rate, defined as the depth integral of ∇ · vs.
Calculation of the dilation rate involves the effects of
an elastic compressibility and an inelastic dilatancy
angle proportional to m − meq, where meq is the value
of m in equilibrium with the ambient stress state
and flow rate. Normalization of the model equations
shows that predicted debris-flow behaviour depends
principally on the initial value of m − meq and on
the ratio of two fundamental timescales. One of these
timescales governs downslope debris-flow motion,
and the other governs pore-pressure relaxation that
modifies Coulomb friction and regulates evolution
of m. A companion paper presents a suite of model
predictions and tests.

1. Introduction
Debris flows are water-saturated masses of soil and
fragmented rock that rush down mountainsides, funnel
into stream channels and form lobate deposits when
they spill onto valley floors. Their geological nature
and mechanical behaviour make them intermediate in
character between rock avalanches and flash floods.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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...................................................Figure 1. Oblique aerial photograph of source areas and runout paths of devastating debris flows that occurred in a
densely populated region of Vargas state east of Macuto, Venezuela, December, 1999. Photograph by Matthew Larsen, US
Geological Survey.

Because debris flows have solid grain concentrations that exceed 0.4, peak speeds that commonly
surpass 10 m s−1, and volumes that range up to approximately 109 m3, they can denude slopes,
bury floodplains and devastate people and property [1,2]. Notable recent debris-flow disasters
involved more than 20 000 fatalities in Armero, Columbia, in 1985 and in Vargas state, Venezuela,
in 1999 (figure 1).

Alternative terms such as mudflow, mudslide, debris torrent and lahar are sometimes used to
describe debris flows, but the terms ‘debris’ and ‘flow’ have precise geological meanings. ‘Debris’
implies that grains with greatly differing sizes and irregular shapes are present. This trait—and
the consequent lack of a characteristic grain size—distinguishes debris-flow mixtures from most
man-made granular mixtures. In debris flows, the largest grains can have linear dimensions
exceeding 10 m, but the presence of at least several weight per cent mud-sized particles smaller
than about 62 µm is generally more critical [3]. Hydrodynamic suspension of these small particles
increases the effective viscosity of the muddy water that fills pore spaces between larger grains
[4], and this enhanced viscosity can promote development and persistence of high pore-fluid
pressure that facilitates debris-flow motion by reducing grain contact forces [5–7]. The term ‘flow’
implies that rearrangement of grain contacts is pervasive during debris-flow motion. Indeed,
granular debris that is liquefied by high pore-fluid pressure can appear to flow almost as fluidly
as water [8].

Spatial and temporal changes in macroscopic material behaviour that result from local
rearrangements of grains and attendant evolution of pore-fluid pressure pose fundamental
challenges for continuum mechanical modelling of debris flows. The most conspicuous
transitions occur as debris mobilizes from static material on slopes, liquefies and flows rapidly,
and later regains rigidity during consolidation of deposits [9,10]. Most debris-flow models
neglect these transitions, and instead treat rheology or depth-averaged flow resistance as inherent
properties of debris [11]. With this approach, flow dynamics simulations typically employ basal
flow resistance coefficients less than half as large as those necessary to statically balance forces
at flow initiation sites [12–14]. Unbalanced initial states are held in check by assuming that an
imaginary dam restrains the debris until the modeller issues a command, but use of this type of
initial condition compromises physical relevance.
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By contrast, most natural debris flows commence when balanced forces are infinitesimally
perturbed. Flow onset commonly results from rainfall or snowmelt that triggers failure of debris-
mantled slopes or mobilization of scree in steep rills and gullies. As masses of water-saturated
grains begin to move, however, the governing force imbalance can evolve dramatically owing
to pore-pressure feedbacks that modify the apparent rheology of the debris [15–17]. Differences
between this type of behaviour and behaviour that arises from a stipulated rheology and force
imbalance have great practical as well as theoretical significance, because pore-pressure feedbacks
can determine whether a rapid debris flow develops at all—as opposed to a creeping landslide
that moves imperceptibly or intermittently downslope [18,19].

2. Objectives
Our chief goal is seamless simulation of debris-flow motion from initiation to deposition
without any redefinition of governing equations, re-evaluation of parameters or restructuring
of numerical methods. An ancillary goal is efficient machine computation of solutions for use
in practical applications. We pursue these goals by formulating a depth-averaged model that
allows feedbacks to develop during coupled evolution of solid and fluid volume fractions, pore-
fluid pressure and debris-flow velocity and thickness. The feedbacks involve dilatancy – the
state-dependent propensity of granular materials to undergo changes in solid volume fraction
as they shear. Well-known since the time of Reynolds [20,21], variable dilatancy underpins the
critical-state theory of soil mechanics [22–24], and it plays a key role in determining of the
continuum-scale rheology of dense granular flows [25].

Previous depth-averaged debris-flow models have included effects of solid–fluid interactions,
and a few have accounted for evolution of solid and fluid volume fractions [5,26–35]. However,
no previous model has explicitly considered dilatancy coupled to pore-pressure feedbacks that
mediate transitions between static and dynamic states. Dry granular materials can undergo
analogous state transitions [36], which can be characterized by using a continuum mechanical
model that employs an evolving order parameter to account for changes in mobility due to
changes in solid volume fraction [37]. The order parameter is not physically measurable, however.
By contrast, direct measurements of pore-pressure evolution due to variable dilatancy have
led to development of a model that successfully simulates a transition from failure to flow
that occurs when water-saturated granular avalanches are manually triggered by increasing
the steepness of submerged slopes [38]. Additional experiments with concentrated grain–fluid
mixtures have shown that a state-dependent Coulomb friction rule that embeds the effects
of variable dilatancy can successfully describe bulk flow resistance over a broad range of
normalized shear rates, including quasi-static rates [39]. Our model is founded partly on
these findings.

All physical principles and empiricisms used in our model are implemented within a depth-
averaged framework. Use of depth-averaged equations in conjunction with shock-capturing
numerical methods and adaptive mesh refinement yields a combination of computational speed
and accuracy well suited for assessment of diverse flow hazards [40,41]. Like all depth-averaged
models, however, our model neglects some details of three-dimensional behaviour. It nevertheless
provides predictions that can be rigorously tested because it computes flow depths, velocities
and basal pore pressures with a resolution similar to that of the most-detailed debris-flow data
collected to date [10,16,42–45]. Use of the solid volume fraction as an additional prognostic
variable expands the possibilities for future model tests.

Section 3 describes physical principles and observations that guide formulation of our
model. Subsequent sections describe derivation of the depth-averaged model equations and
analytical results that help clarify their physical implications. A companion paper [46] examines
mathematical properties of the model, describes our numerical method for solving the model
equations, and tests computational predictions of initiation of debris-flow motion as well as
subsequent flow and deposition.
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3. Physical principles and definitions
To represent debris-flow behaviour, our model combines principles from soil mechanics,
grain-flow mechanics and fluid mechanics, which we quantify below. We also quantify our
rationale for treating two-phase debris flows as granular flows with evolving solid volume
fractions and pore-fluid pressures. In this approach the fluid-phase velocity is evaluated in a
frame of reference that translates with the granular phase, and variations of fluid velocity result
in variations of fluid pressure. Our model excludes the effects of grain-size segregation and
bed-sediment entrainment, which are important in many debris flows [44,47]. It is designed
to incorporate the effects of segregation and entrainment in a manner consistent with the
depth-integrated analyses of Gray & Kokelaar [48] and Iverson [49], however.

(a) Continuum conservation laws
Within each phase of a debris-flow mixture, and also within the mixture as a whole, conservation
of mass is expressed by

∂ρ

∂t
+ ∇ · ρv = 0, (3.1)

where ρ is the mass density and v is the velocity vector. Similarly, conservation of linear
momentum is expressed by

∂ρv
∂t

+ ∇ · ρvv = ρg + ∇ · T, (3.2)

where g is the acceleration due to gravity and T is the stress tensor, which is assumed to be
symmetric [50]. We use the standard sign convention of continuum mechanics to define shear
components of T [51,52]. However, because granular debris can sustain negligible tension, we
define normal components of T using a soil mechanics sign convention in which compressive
stresses are positive. Thus, in rectangular Cartesian coordinates we express the x component
of ∇ · T as −∂τxx/∂x + ∂τyx/∂y + ∂τzx/∂z. Use of this convention simplifies our definition of
constitutive equations and evaluation of boundary tractions.

Our model includes no energy-conservation equation because we treat debris flows as
isothermal systems. By contrast, Bartelt et al. [53] have developed a depth-averaged model of
granular snow avalanches that includes an energy equation roughly analogous to those used in
kinetic grain-flow theories. In the model of Bartelt et al. [53], the effective frictional resistance
of an avalanche evolves because it is mediated by evolution of kinetic energy associated with
grain velocity fluctuations. The effective frictional resistance evolves in our model as well, but
it does so as a result of evolution of dilatancy and pore-fluid pressure. The difference between
our formulation and that of Bartelt et al. [53] is logical, because debris flows contain muddy pore
water that is roughly 103 times more dense and viscous, as well as 104 times less compressible,
than pore air at Earth’s surface. Therefore, as demonstrated by dimensional analysis, pore fluid is
likely to play a pivotal role in debris flows but not in most dry avalanches [54].

(b) Definitions of volume fractions, densities and velocities
Our model assumes that the solid and fluid constituents of debris are incompressible, with mass
densities ρs and ρf, respectively. Therefore, the mixture bulk density ρ varies exclusively as a
result of grain rearrangements and elastic shear distortion localized at grain contacts (cf. [55]).
Our definition of the mixture bulk density,

ρ = ρsm + ρf(1 − m), (3.3)

additionally assumes that each representative elementary volume of debris contains sufficient
solid and fluid material that the solid volume fraction m and fluid volume fraction 1 − m can be
regarded as continuous variables. Commonly m varies from about 0.4 in the most dilute debris
flows (or parts of debris flows) to 0.8 in the densest (cf. [56]). This variation implies that ρ ranges
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from about 1700 to 2400 kg m−3, because the solid constituents of debris are largely rock fragments
with ρs ≈ 2700 kg m−3, and the fluid constituents are mostly muddy water with ρf ranging from
about 1000 to 1200 kg m−3 [5,57].

Like the mixture density, the mixture momentum is weighted by the mass of solid grains ρsm
and mass of pore fluid ρf(1 − m) per unit volume, but it also depends on the velocities of each
phase. Thus, the linear momentum of the mixture is defined as ρv = vsρsm + vfρf(1 − m), where
vs is the velocity of the solid grains, and vf is the velocity of the pore fluid. This definition of
mixture momentum implies that the mixture velocity is defined as

v = vsρsm + vfρf(1 − m)
ρ

. (3.4)

Another velocity that plays a key role in our model is the pore-fluid velocity relative to the solid
grain velocity, vf − vs. To an observer moving with the local solid velocity vs, the apparent fluid
velocity is the volumetric flux of pore fluid per unit area of mixture, q:

q = (1 − m)(vf − vs). (3.5)

In porous media theory, q is termed the specific discharge [58].
To simplify our model, we approximate the mixture velocity as v ≈ vs. The basis for this

approximation can be established by using (3.3)–(3.5) to find that

v
‖vs‖ = ρf

ρ

q
‖vs‖ + vs

‖vs‖ , (3.6)

where ‖ ‖ denotes the Euclidean norm of a vector. For rapid debris-flow motion, (3.6) reduces to
v ≈ vs, because values ρf/ρ ≈ 1/2 and ‖q‖/‖vs‖ � 1 are typical [5]. For the initial and final stages
of debris-flow motion, with ‖vs‖ ≈ 0, (3.6) instead reduces to v ≈ (ρf/ρ)q. Nevertheless, v ≈ vs

remains a good approximation because ‖q‖ � 0.1 m s−1 is typical, implying that the mixture
momentum balance (3.2) reduces to the quasi-static form ρg + ∇ · T ≈ 0 [59].

(c) Definitions of total stress, effective stress and pore-fluid pressure
A formulation that approximates the mixture momentum as ρvs requires that the total mixture
stress T must account not only for solid- and fluid-phase stresses but also for all effects of solid–
fluid interactions. These effects can be diverse, but in mixtures of fluid and macroscopic grains
(subject to negligible Brownian forces), the effects are commonly dominated by buoyancy and
viscous drag [33,60]. Other interaction forces include hydrodynamic-lift, added-mass and Basset
forces, but these forces are probably muted in debris flows owing to restriction of fluid flow
caused by high concentrations of grains with differing shapes and sizes [5,6]. Indeed, a linear
Darcian drag law can explain relaxation of non-hydrostatic pore-pressure gradients measured
in freshly agitated, liquefied debris-flow slurries [61]. On this basis, our model assumes that
buoyancy and viscous drag wholly account for the effects of solid–fluid interactions on the
mixture stress, T. As shown below, the net effect of these interactions is manifested on a bulk
continuum scale by gradients of pore-fluid pressure, p.

Our model isolates the effects of p by using a principle of soil mechanics, which states that T can
be expressed as the sum of p and an effective stress Te [55,62]. By convention Te and p are treated
mathematically as if they act throughout the entire solid–fluid mixture, although this practice is
largely a matter of convenience and is not mandated by mechanics [63,64]. By combining Te and
p with a viscous deviatoric stress component Tvis (which acts only in the fluid volume fraction
1 − m as a result of shearing of the fluid phase), we define the total mixture stress as

T = Te + Ip + (1 − m)Tvis, (3.7)

where I is the identity tensor. Equation (3.7) indicates that, in the presence of constant T, increases
in p cause commensurate reductions in the mean effective normal stress σe, defined as

σe = 1
3 tr(Te) = 1

3 tr(T) − p = σ − p, (3.8)

where σ = (1/3)tr(T) is the mean total normal stress.
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To distinguish the effects of buoyancy from those of solid–fluid drag, we subdivide p into a
hydrostatic component ph and a non-hydrostatic ‘excess’ component pe

p = ph + pe. (3.9)

In our model, values of ph depend only on the evolving geometry of a mass of fluid-saturated
debris, whereas values of pe are affected by q. In turn, q is a consequence of debris dilation
or contraction.

(d) Definition of dilation rate
We define the local debris dilation rate as the divergence of vs, which is related to evolution of the
solid volume fraction m by

∇ · vs = − 1
m

dm
dt

, (3.10)

where d/dt = ∂/∂t + vs · ∇ is a material time derivative in a frame of reference that moves with
the granular velocity vs [58]. Thus, dm/dt< 0 indicates a positive dilation rate, whereas dm/dt> 0
indicates a negative dilation rate (i.e. a rate of contraction). Although ∇ · vs does not appear
explicitly in our final model equations, dm/dt plays a prominent role.

Because we assume that incompressible fluid fills all pore spaces in the debris (except where
grains may protrude from the free upper surface of a flow, as detailed in §4), the debris dilation
rate is locally balanced by the divergence of q. This fact can be demonstrated formally by
manipulating the mixture mass-conservation equation (3.1) while embedding the definitions
(3.3)–(3.5) to obtain

∇ · vs = −∇ · q. (3.11)

Thus, a positive dilation rate is accompanied by a local influx of fluid, and a negative dilation is
accompanied by a local fluid efflux.

A central postulate of our model is that the dilation rate depends on two mechanical
phenomena that modify m: changes in σe that cause reduction or enlargement of the debris pore
space due to bulk compressibility of the mixture, and changes in mixture shear strain that cause
pore space contraction or expansion due to dilatancy. We assume that these two phenomena are
independent of one another, except insofar as they each involve interactions with other variables
such as pore-fluid pressure. We therefore define the total rate of change of m as

dm
dt

= ∂m
∂σe

dσe

dt
+ ∂m
∂γ
γ̇ , (3.12)

where γ is a scalar measure of natural shear strain, which is referenced to evolving granular-
phase material coordinates that move with velocity vs (cf. [52, p. 151]), and γ̇ = dγ /dt is a scalar
measure of the associated shear rate (i.e. γ̇ /2 is the square root of the second principal invariant
of the deviatoric deformation-rate tensor). A detailed description of three-dimensional strains
and deformation rates is beyond the scope of our depth-averaged model, however, and is also
beyond the resolution limits of the most-detailed full-scale debris-flow experiments conducted
to date [9,16,44,65,66]. Therefore, we estimate the effects of γ̇ on dm/dt by considering idealized
deformations consisting of isotropic volume strain and homogeneous simple shearing in x − z
and/or y − z planes (figure 2). This idealization yields a parsimonious model that can be tested
using existing datasets [46].

(e) Definition of compressibility
Application of (3.12) requires a constitutive relationship to determine ∂m/∂σe. At effective
confining stresses typical of debris flows less than 50 m thick (σe ≤ 106 Pa), bulk compression or
expansion of granular debris caused by changes in σe results almost entirely from changes in
pore volume rather than from changes in the densities of the debris’ solid and fluid constituents
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V = V0 = 1.0, Vs = 0.5
m = 0.5

z

y
1

0.99

1
1

1.01

1.01
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0.2

undeformed deformed

Dt
a0

b0

a1

b1

x

V = V1� 1.0099, Vs = 0.5
m � 0.49510

Figure 2. Idealized deformation of a cubical unit cell subject to isotropic dilation (exaggerated for illustrative purposes) and
homogeneous simple shearing in the x–z plane during the time increment�t. Volume of solid grains in unit cell, Vs, is the
same inundeformedanddeformed states, but changesoccur in total cell volume,V, and solid volume fraction,m= Vs/V.Major
andminor principal components of cumulative natural strain depicted in this example areε1 = ln(a1/a0)≈ 0.10028 andε3 =
ln(b1/b0)≈ −0.10038. Cumulative intermediate principal strain (normal to page) isε2 = ln(1.01/1)≈ 0.009950, cumulative
shear strain is ε1 − ε3 ≈ 0.20066 and cumulative volume strain is εV = ln(V1/V0)= ε1 + ε2 + ε3 ≈ 0.009850. If all
volume change is caused by dilatancy, then the dilatancy angle defined in terms of cumulative natural strain is ψ =
sin−1[εV/(ε1 − ε3)]≈ 2.814◦. Our model does not compute strains, and instead estimates the continuously evolving
dilatancy angle as ψ = tan−1[ε̇V/γ̇ ], where ε̇V ≡ (1/V)(dV/dt)= −(1/m)(dm/dt) is the volumetric strain rate of
the granular phase, and γ̇ = 2

√
ū2 + v̄2/h is the depth-averaged shear rate estimated from the local flow thickness

h and depth-averaged velocity components ū and v̄. For the deformation increment depicted here, we find that ε̇V ≈∫V1
V0
dV/V�t = ln(V1/V0)/�t = 0.009850/�t and γ̇ = 2ū/h≈ 0.2010/�t, which yields ψ ≈ 2.806◦, a value that

differs only slightly from the more-precisely calculated value noted above.

[55,62]. Therefore, the debris compressibility α can be defined by using a relationship commonly
employed in soil mechanics [58]

α = 1
m
∂m
∂σe

. (3.13)

This relationship may alternatively be expressed as α= [m(ρs − ρf)]−1(∂ρ/∂σe), a form that reveals
an analogy with ideal-gas compressibility. Just as compression of a gas can be a nearly reversible
process, α can be regarded as a nearly reversible, elastic compressibility, because the pore volume
change described by (3.13) arises largely from localized elastic shear straining of grain asperities
that exist where irregular grains contact one another [55,67]. On the other hand, (3.13) implies
that α cannot be a constant. Indeed, if α were constant and γ̇ = 0 were enforced, then (3.13) and
(3.12) would lead to dm/dt = mα(dσe/dt), indicating that exponential growth of m would occur
in response to any growth of σe.

Existing data provide guidance for evaluating variation of α as a function of m and σe.
Gravity-driven consolidation of unconfined, nearly liquefied debris-flow slurries with m ≥ 0.4
generally exhibits behaviour consistent with α ≈ 10−5 Pa−1 [61,68]. Compressibilities as large as
α ∼ 10−2 Pa−1 have been measured for relatively dilute, mud-rich slurries and dredged sludges
with σe < 103 Pa and m< 0.4 [69–71], whereas values α ∼ 10−7 Pa−1 are more typical of loosely
packed sand and sand–gravel mixtures with σe > 104 Pa and m> 0.55 [72,73]. For virtually all soils
and debris slurries, values of α increase monotonically as values of σe and m decrease (cf. [5,74]),
although α must approach some upper limit when σe is sufficiently small. To reconcile these
observations with (3.13), we postulate the constitutive relationship

α = a
m(σe + σ0)

, (3.14)
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MSH lahar debris
OSC lahar debris
B&S mud-rich slurries
F&B Panther Ck. slurry

USGS flume SGM

0.1 1

se/s0

10 100 1000

Figure 3. Graphs of equation (3.15) (solid lines) and data obtained in laboratory measurements of the compressibilities of six
quasi-static debris mixtures. ‘USGS flume SG’ and ‘USGS flume SGM’ refer to sand–gravel and sand–gravel–mud mixtures
used in large-scale debris-flow experiments of Iverson et al. [10]. ‘MSH lahar debris’ and ‘OSC lahar debris’ refer to mixtures
reconstituted from deposits of two large debris flows: the North Fork Toutle lahar of 18 May 1980 at Mount St. Helens (MSH),
USA [75], and the Osceola (OSC) lahar of about 5600 years ago at Mount Rainier, USA [76]. Data for all of the aforementioned
materials were obtained from triaxial loading tests reported by Major [72]. ‘B&S mud-rich slurries’ refers to data reported by
Been & Sills [69], and F&B Panther CK refers to data reported by Fox & Baxter [71]. Each of these studies involved slurries that
were finer grained and more dilute than the materials studied by Major [72].

where a is a proportionality coefficient and σ0 is a reference stress that establishes the maximum
debris compressibility, a/mσ0, which applies when σe = 0.

The implications of our constitutive relationship for α can be seen most clearly by combining
(3.14) with (3.13) and (3.12), and then integrating the resulting equation for a special case with
γ̇ = 0 or ∂m/∂γ = 0 (i.e. zero shear rate or zero dilatancy). This operation yields the solution

m − mmin = a ln
[
σe

σ0
+ 1

]
, (3.15)

which satisfies the auxiliary condition m = mmin when σe = 0. Graphs of (3.15) can be compared
with data obtained in laboratory compression and slurry-consolidation tests of diverse debris-
like materials (figure 3). Because none of the tests involved gravity-free conditions in which an
ideal limiting state with m = mmin and σe = 0 was attained, we extrapolated the data for m as a
function of σe in order to estimate the values of mmin and σ0 necessary for normalizing the data in
figure 3 (Table 1). Use of alternative values of mmin and σ0 would not affect the slopes of the data
trends depicted in the figure, however. These trends show that the most-plausible values of a in
(3.15) range from about 0.01 to 0.05, irrespective of the debris composition. The largest values of
a as well as the smallest values of mminand σ0 apply to mixtures with the highest mud contents.
Owing to the ability of (3.15) to mimic the data trends in figure 3, we adopt (3.14) as our definition
of debris compressibility, and we infer that values 0.01 ≤ a ≤ 0.05 and 10 Pa ≤ σ0 ≤ 1000 Pa in (3.14)
are commonly suitable. Model predictions presented in our companion paper [46] help test the
validity of this inference.

(f) Definition of dilatancy
The dilatancy of granular materials is traditionally expressed as an angle, as discussed in detail
by Rowe [77], Nemat-Nasser [78], Bolton [23], Houlsby [24] and Rao & Nott [79]. In our model,
evolving values of the dilatancy angle ψ are not specified. Instead they are the by-product
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Table 1. Debris materials, data sources and data-normalization factors used to assemble figure 3.

material (and data source) mmin σ0 (Pa)a

USGS debris flume SG mixture [72, appendix 1] 0.62 1000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USGS debris flume SGM (or SGL) mixture [72, appendix 1] 0.58 1000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MSH mixture fromMount St. Helens lahar [72, appendix 1] 0.60 1000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OSC mixture from Osceola lahar [72, appendix 1] 0.40 1000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B&S mud slurries [69, fig. 16] 0.06 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F&B Panther Creek slurry [71, fig. 8] 0.10 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aTabulated values of σ0 are order-of-magnitude estimates of the characteristic intergranular normal stress based on data reported for each
set of experiments.

of coupled evolution of the solid volume fraction, flow velocity, flow thickness and pore-
fluid pressure. Nevertheless, ψ can also be interpreted as a state-dependent material property
defined by

tanψ = 1
V
∂V
∂γ

= − 1
m
∂m
∂γ

, (3.16)

where, for a fixed mass of grains, ∂V/V is the part of the natural volume strain caused by an
increment of shear strain ∂γ (figure 2). This definition of ψ is similar to that used in theories of
quasi-static plastic deformation of rocks and soils [55], but our model avoids explicit evaluation
of strains and instead combines (3.16) with (3.12) and (3.13) to recast the definition of ψ in terms
of rates

γ̇ tanψ = α
dσe

dt
− 1

m
dm
dt

. (3.17)

Thus, for any non-zero shear rate γ̇ , (3.17) describes how ψ is related to the total dilation rate
(−1/m)dm/dt and the portion of the total dilation rate caused by changes in the mean effective
stress, α(dσe/dt).

Some key implications of (3.17) can be illustrated by considering special cases. For example, if
α = 0 or dσe/dt = 0, then (3.17) reduces to dm/dt = −mγ̇ tanψ , which indicates that unsustainable
growth or decay of m would occur in the presence of constant ψ and γ̇ . Thus, values of ψ
must evolve as values of σe and m evolve during deformation. For experiments in which steady
values of γ̇ and m are imposed, (3.17) implies that ψ evolves during a start-up phase in which
σe evolves until dσe/dt = 0 and ψ = 0 are satisfied. This equilibration of σe to an imposed γ̇

and m is tantamount to development of steady dispersive normal stress in the enclosed shear
cell experiments of Bagnold [80] (cf. [81,82]). On the other hand, if a steadily shearing grain–
fluid mixture freely dilates or contracts when a step change in σe is externally imposed, then
(3.17) implies that γ̇ subsequently equilibrates to a new steady state as dm/dt → 0 and ψ → 0.
Boyer et al. [39] observed this type of equilibration in experiments more relevant than those of
Bagnold [80]—at least with respect to gravity-driven geophysical flows—because Boyer et al. [39]
employed a stress-controlled shear cell that allowed unrestricted evolution of m and attendant
pore-fluid flow.

Although (3.17) is consistent conceptually with broad patterns of behaviour observed in
experiments, it gives an incomplete description of dilatancy. It provides no relationship between
instantaneous values of ψ , γ̇ , m and σe, and it contains no information about behaviour in the
static limit γ̇ → 0. No fundamental theory provides a framework for linking these quantities
in diverse granular states [36,83], but Forterre & Pouliquen [25] present a variety of evidence
indicating that, for dense granular flows, ψ can be viewed as a material property that depends
on the evolving difference between the ambient solid volume fraction m and a volume fraction
meq that is equilibrated to the ambient confining pressure and shear rate. Dilatancy can thereby
exhibit memory effects as well as dependence on the instantaneous state of the material (cf. [84]).
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This approach effectively extends concepts that were originally developed in critical-state models
of quasi-static soils [22], and we employ it in our model.

To evaluate the instantaneous relationship between tanψ and m − meq in disequilibrium
states, we adopt a linear formula used by Roux & Radjai [85] and Pailha & Pouliquen [38], who
inferred that tan ψ = K(m − meq), where K is a calibration factor. Moreover, to limit the number of
adjustable parameters in our model, we tentatively set K = 1, and thereby define

tanψ = m − meq. (3.18)

This relationship implies that ψ generally falls in the range −0.2<ψ < 0.2 (radians) in our model,
because debris-flow materials typically have 0.4 ≤ m ≤ 0.8 and meq ≈ 0.6.

To gauge the combined effects of the stress state and shear rate on meq, we use a dimensionless
parameter similar to the ‘viscous number’ Iv =μγ̇ /σe used by Pailha & Pouliquen [38] and Boyer
et al. [39] (cf. [86,87]). However, because our model allows for the development of fully liquefied
states with σe = 0, we use a generalized dimensionless parameter, N, which has a value that
remains finite in such states

N = μγ̇

ρsγ̇ 2δ2 + σe
. (3.19)

Here, μ is the effective shear viscosity of muddy pore fluid, and δ is a length scale associated
with generation of normal stresses by grain collisions during shearing (cf. [80,88]). For flows of
geological debris containing a great diversity of grains, the value of δ is not well constrained.
Therefore, in our model we simply set δ = 0.001 m to match the size of typical sand grains.

Physical interpretation of N is facilitated by noting that (3.19) can be recast as

N = Iv

IvS + 1
, (3.20)

where S is a Stokes number defined as S = (ρsγ̇ δ
2)/μ. For typical debris-flow conditions in which

the values ρs = 2700 kg m−3, 0< γ̇ ≤ 10 s−1, δ = 0.001 m, 0.001 ≤μ≤ 0.1 Pa-s and 10 ≤ σe ≤ 106 Pa
apply, the values 0 ≤ Iv ≤ 0.1 and 0< S< 30 apply in (3.20). These values indicate that the full
range of typical N values is 0 ≤ N ≤ 0.1, and that the range of N commonly mirrors that of Iv. The
only significant difference in the values of N and Iv arises if σe < 10 Pa, in which case N → 1/S
as σe → 0 and Iv → ∞. Therefore, in our model, N = 1/S is an upper bound value that applies
if grain motion is almost fully damped by fluid viscosity. (The mathematical singularity at S = 0
is physically irrelevant unless there is perfect damping, which cannot occur in moving debris
described by our model.)

The function meq(N) can be inferred from experimental data and from physical constraints
that imply behavioural limits. In the static limit with Iv = 0 and N = 0, the value meq = mcrit
applies, where mcrit is the critical-state volume fraction defined for lithostatically stressed states
in normally consolidated soils [22]. Few direct measurements of mcrit for poorly sorted geological
debris exist, but limited data indicate that a reasonable range is 0.5 ≤ mcrit ≤ 0.7 [16]. The
relationship between mcrit, meq and Iv for non-static cases has been revealed most clearly by
Boyer et al. [39], who found that the function

meq(Iv) = mcrit

1 + √
Iv

(3.21)

provided an excellent fit to experimental data for various mixtures of liquids and uniform spheres
that were incompletely liquefied. In lieu of similarly detailed information for debris mixtures
that contain diverse grains, we combine the approximation N ≈ Iv with (3.21) with (3.18) to
pose what we believe is the simplest plausible constitutive relationship for state-dependent
debris-flow dilatancy

tanψ = m − mcrit

1 + √
N

. (3.22)

Taken together, (3.17) through (3.22) imply that disequilibrium values of m tend to relax towards
an equilibrium value meq that depends on N. If N = 0, then meq = mcrit applies. The relaxation
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Figure 4. Graphs of equation (3.24), illustrating relaxation behaviour of m for cases in which N has the constant values 0, 0.1
or 1. The initial condition ism(0)/mcrit = β . For N=0,m relaxes tomcrit. For N> 0,m relaxes to a dynamic equilibrium value
meq that is smaller thanmcrit.

time for m can be evaluated precisely for a special case in which γ̇ , σe and N are constants [38]. In
this case, combination of (3.17) and (3.22) yields

dm
dt

= γ̇m
[

mcrit

1 + √
N

− m
]

, (3.23)

in which mcrit/(1 + √
N) is constant. A useful solution of (3.23) satisfies the initial condition m(0) =

βmcrit, where β > 1 describes initial states denser than the static critical state, and β < 1 describes
initial states looser than the static critical state. This solution

m
mcrit

=
[

1 +
√

N −
(

1 +
√

N − 1
β

)
exp(−meqγ̇ t)

]−1
(3.24)

indicates that m approaches meq in a manner that depends on both β and N, but in every case the
approach occurs with a characteristic relaxation time 1/meqγ̇ (figure 4). Because mature debris
flows typically have meq values of roughly 0.6 and γ̇ values larger than 1 s−1 [5], (3.24) implies
that the relaxation m → meq typically would occur in less than 2 s if N were constant and no pore
fluid were present. However, in our model relaxation of m is strongly regulated by evolution of
pore-fluid pressure, as described below.

(g) Definition of pore-fluid viscosity and solid–fluid drag
On the basis of diverse evidence summarized by Iverson [5], we define the debris-flow fluid
phase as water plus persistently suspended clay and silt-sized particles (collectively called
mud particles) with effective diameters smaller than about 62 µm. In most natural debris flows
and in large-scale experiments, the mud suspension has inferred solid volume fractions less
than 0.2 [10,57]. These relatively dilute mud suspensions generally have effective viscosities
that exceed that of pure water (approx. 0.001 Pa-s) by a factor ranging from about 5 to 100,
whereas suspensions with solid volume fractions >0.4 can have viscosities that exceed that of
water by a factor more than 1000 [3,89]. Furthermore, as the mud volume fraction increases,
nonlinear rheological effects become increasingly prominent, particularly if mud particles consist
of colloidal or chemically reactive clay [4,90,91]. Here, for the sake of parsimony, we neglect
possible nonlinearities and treat pore fluid as an incompressible, Newtonian viscous material
with a constant shear viscosity μ. Moreover, we assume that on a bulk scale, the liquid’s shear
deformation rate can be represented adequately by a deformation-rate tensor R that applies to

 on August 4, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130819

...................................................

0.4

flume SGM

MSH
OSC

flume SG

10–13

10–12

10–11

10–10

10–9

0.5

solid volume fraction, m

pe
rm

ea
bi

lit
y,

 k
(m

2 )

0.6 0.7 0.8

Figure 5. Data from compaction permeameter tests of diverse debris mixtures (adapted from [5,72]). ‘Flume SGM’ and ‘Flume
SG’ denote standard mixtures used in the large-scale debris-flow experiments of Iverson et al. [10]. ‘MSH’ and ‘OSC’ denote
mixtures extracted from deposits of two large debris flows: the North Fork Toutle flow of 18 May 1980 at Mount St Helens
(MSH), USA [75], and the Osceola flow (OSC) of about 5600 years ago at Mount Rainier, USA [76]. For the MSH and OSC
mixtures, only grains smaller than 16 mm were included in tests. Lines depict graphs of equation (3.27) fitted to data by
using the values k0 = 1.5 × 10−10 m2 for Flume SG, k0 = 2.5 × 10−11 m2 for Flume SGM, k0 = 1.4 × 10−12 m2 for MSH and
k0 = 1.0 × 10−13 m2 for OSC.

the solid–fluid mixture as a whole. We therefore use the fluid-phase constitutive equation [50]

Tvis = 2μR. (3.25)

Pore-fluid viscosity influences debris-flow behaviour not only by dissipating energy during bulk
shearing, but also by exerting drag as fluid moves with respect to adjacent solid grains. Because
grain sizes and shapes in geological debris are very diverse, drag formulae for specific grain
sizes and shapes have limited applicability. As an alternative, we treat drag as a bulk continuum
phenomenon that reflects the influences of solid–fluid interactions integrated over the entire
grain-size distribution. For this purpose, we use Darcy’s Law

q = − k(m)
μ

∇pe, (3.26)

where k(m) is the hydraulic permeability of the granular aggregate, and pe is the excess pore-fluid
pressure defined in (3.9). For the function k(m), we use the empirical formula

k(m) = k0 exp
(

0.6 − m
0.04

)
, (3.27)

which provides acceptable fits to data obtained from compaction permeameter testing of quasi-
static debris with compositions that span much of the range observed in nature (figure 5). For
this broad spectrum of debris, the reference permeability k0 in (3.27) has values that range from
about 10−10 m2 for debris with approx. 2% mud content to 10−13 m2 for debris with about 50%
mud content by dry weight. Large volumes of rapidly shearing debris are probably characterized
by larger values of k0 owing to the effects of agitation that opens transient pathways for fluid
flow, and also to the effect of scale on the effective permeabilities of porous media [92]. However,
no measurements have been performed on large volumes of agitated, poorly sorted debris.
Therefore, we infer that k0 may have values larger (but not smaller) than those portrayed
in figure 5.

Because values of k are probably no larger than about 10−7 m2 in realistic, agitated debris,
and because values of μ in muddy pore water are about 10−2 − 10−1 Pa-s, we infer that the
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excess pore-pressure gradients described by (3.25) can readily have magnitudes comparable to
those of hydrostatic gradients (∇pe ∼ ρfg ∼ 104 Pa m−1). Gradients of at least this size occur if
the magnitude of q exceeds 10−1 m s−1 in debris-flow materials with the largest k/μ values and
if it exceeds 10−8 m s−1 in debris-flow materials with the smallest k/μ values. Development of
excess pore-pressure gradients can inhibit debris dilation and contraction, and these gradients
serve as a volume-averaged surrogate for the effects of local lubrication forces where individual
grains displace fluid in adjacent pores [90,93,94]. In turn, inhibition of dilation or contraction
produces feedbacks that can lead to regulation of ∇pe by diffusive redistribution of excess
pore-fluid pressure.

(h) Diffusive redistribution of excess pore-fluid pressure
The relationship between the excess pore-pressure gradient described by (3.26) and the dilation
rate described by (3.17) implies that pore-pressure evolution is mathematically analogous to
forced diffusion (cf. [95]). This analogy can be established by first combining (3.10), (3.11) and
(3.26) to find that

1
m

dm
dt

= −∇ ·
[

k
μ

∇pe

]
. (3.28)

The volume fraction m can be eliminated from (3.28) by combining it with (3.17) to obtain

dσe

dt
= − k

αμ
∇2pe − 1

α

[
∇ k
μ

]
· ∇pe + γ̇ tanψ

α
, (3.29)

where k/αμ plays the role of a pore-pressure diffusivity. Finally, definitions (3.8) and (3.9) can be
used to infer that dσe/dt = dσ/dt − dpe/dt − dph/dt, and substitution of this relationship in (3.29)
enables the equation to be recast as a forced, advection–diffusion equation for pe,

dpe

dt
− k
αμ

∇2pe − 1
α

[
∇ k
μ

]
· ∇pe = d(σ − ph)

dt
− γ̇ tanψ

α
, (3.30)

where, as above, d/dt = ∂/∂t + vs · ∇. If all time derivatives are zero and γ̇ tanψ is constant,
then (3.30) reduces to the steady-state balance ∇ · [(k/μ)∇pe] = γ̇ tanψ , which can alternatively
be expressed as −∇ · q = γ̇ tanψ . This result shows that porosity creation during steady dilation
is balanced by a steady influx of fluid that fills the enlarging pores.

The forcing effects described by the right-hand side of (3.30) can drive rapid pore-pressure
change, but pe can also evolve in the absence of forcing owing to diffusion described by the
left-hand side of (3.30). A standard diffusion-equation normalization shows that pe relaxes
diffusively with a time-scale h2αμ/k, where h is the debris-flow thickness (i.e. the distance
over which pore-pressure diffusion typically occurs). For the range of k/μ values considered
above (10−12 − 10−5 m3 kg−1 s) and the representative value α= 10−5 Pa−1, h = 1 m implies that
timescales of unforced pore-pressure diffusion can range from roughly 1 s to 30 years. Thus, in an
extreme case involving flow of gravel and water with little finer sediment, excess pore pressure
may dissipate diffusively on a timescale much shorter than that of a flow duration. In the opposite
extreme (e.g. a large, clay-rich volcanic debris flow), pore-pressure dissipation may proceed so
slowly that its effects are modest until long after downstream motion has ceased. As a result of
the dependence of the diffusion timescale on h2, large debris flows can readily maintain higher
fluid pressures, lower Coulomb friction, and greater mobility than can small flows with the same
composition [5].

(i) Coulomb friction
An abundance of evidence indicates that Coulomb friction generates most of the resistance to
debris-flow motion—particularly if Coulomb behaviour is defined as a proportionality between
shear stresses and normal stresses on planes of shearing, irrespective of the shear rate [11]. With
this definition, Coulomb friction characterizes the shear-to-normal stress ratio in most quasi-static
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soils [96], in dense granular flows with enduring grain contacts [25], in more dilute granular
flows characterized by brief grain collisions [97], and in shear flows of concentrated solid–liquid
mixtures [39,80]. Indeed, on a bulk continuum scale, a proportionality between normal and shear
stresses on planes of shearing appears to be a nearly universal property of granular materials.

In our model, the Coulomb friction rule represents the influences not only of grain-boundary
friction but also of dilatancy and modification of normal stresses at grain contacts by pore-fluid
pressure. On the basis of well-established principles of soil mechanics and empirical evidence
[98,99], we use the effective stress Te defined in (3.7) as the stress that influences bulk frictional
resistance to shearing. Thus, if all else is constant, frictional resistance decreases as pore pressure
locally increases. Dilatancy ψ influences bulk shear resistance through geometrical effects on
grain rearrangement. Following the rationale of Rowe [77], Nemat-Nasser [78], Bolton [23] and
Houlsby [24], we infer that the effects of ψ contribute additively to those of a constant-volume
friction angle φ, which characterizes friction under conditions with m = meq. By embedding this
effect ofψ and also embedding the effect of pore pressure, we express the Coulomb friction rule as

τ s = v
‖v‖ [(σn − p) tan(φ + ψ)], (3.31)

where τ s is the granular-phase shear stress vector acting on planes of shearing, σn is the total
normal stress on these planes, and v/‖v‖ indicates that positive shear stresses resist motion. The
Coulomb rule can be expressed more completely in three-dimensional tensor form [100], but this
complication is unnecessary here because we do not evaluate three-dimensional stress states in
our depth-averaged model. A further complication is that Coulomb friction may exhibit rate-
dependence, manifested as a gradual increase of φ as a function of Iv [39]. Here, for the sake of
parsimony, we neglect this effect, although (3.31) implies that granular shear resistance exhibits
some implicit rate-dependence owing to the effects of the shear rate on ψ and p.

4. Depth-averaged model equations
Our depth-averaged model describes coupled evolution of the flow thickness h(x, y, t), solid
volume fraction m(x, y, t), basal pore-fluid pressure pb(x, y, t) and depth-averaged components of
the mixture velocity, which are ū(x, y, t) in the x-direction and v̄(x, y, t) in the y-direction. The z
component of the mixture velocity, w, is not predicted explicitly, but it is related to h, u(h) and v(h)
through the kinematic boundary conditions

w(h) = ∂h
∂t

+ u(h)
∂h
∂x

+ v(h)
∂h
∂y

, w(0) = 0, (4.1)

which apply at z = h(x, y, t) and at a rigid basal boundary, where z = 0.
The necessity of specifying the direction of depth integration a priori makes the choice of

a coordinate system crucial. Some depth-averaged models use an Earth-centred, orthogonal
Cartesian coordinate system with z vertical, which has the advantage of being independent of
terrain geometry. This approach leads to complicated mechanical considerations when accounting
for the effects of steep, irregular topography, however [101]. Other models, including the one we
present here, use a z-coordinate normal to the local ground surface, such that the x-coordinate
is directed downslope and the y-coordinate is directed cross-slope (figure 6). This approach, also,
has limitations, because curvilinear coordinates are needed to adapt it to irregular terrain, limiting
the utility of conventional digital elevation models of Earth’s topography. Here, to emphasize the
main new features of our model, we omit the effects of bed curvature and focus on flows that
traverse planar terrain. Our companion paper [46] addresses bed curvature effects.

(a) Mass balances
Our model includes two mass-balance equations: one for the solid–fluid mixture as a whole and
one for the granular solid phase. Because no data exist that document variations of the bulk
density ρ or solid volume fraction m as a function of z in realistic debris flows, the equations
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Figure 6. Schematic vertical cross-sectional view of a debris flow descending a planar slope inclined at the angle θ . The
coordinate system and flow length scales H and L are defined. Magnified slice illustrates four of the dependent variables used
in the depth-averaged model: ū, h, basal pore pressure pb and solid volume fractionm. An additional dependent variable, not
illustrated here, is the depth-averaged velocity component in the y-direction, v̄.

assume that ρ(x, y, t) and m(x, y, t) are uniform at all depths below the surface at z = h(x, y, t).
However, the definition of h itself involves a potential ambiguity: because rocks may protrude
variable distances above the adjacent liquid at the surface of debris flows, solid and liquid volume
fractions may be ill defined in the vicinity. To avoid this ambiguity, we define z = h(x, y, t) as the
position of a virtual free surface, such that the debris-flow mass per unit basal area �x�y is given
by ρh(x, y, t) (figure 7). In effect, this definition replaces some combination of solid or liquid mass
immediately above or below h(x, y, t) with a thin, equivalently massive, homogeneous layer with
a density ρ and upper surface at h(x, y, t). In this way, ρh(x, y, t) is conserved, despite the fact that
solid or liquid constituents may pass through h(x, y, t) during dilation or contraction.

The depth-integrated dilation rate D(x, y, t) plays a key role in our mass-balance equations. It
is defined by integrating (3.10) through the flow thickness to obtain

D(x, y, t) ≡
∫ h

0
(∇ · vs)dz = −

∫ h

0

1
m

dm
dt

dz = − h
m

d̄m

d̄t
. (4.2)

Here and in subsequent equations d̄/d̄t = ∂/∂t + ū∂/∂x + v̄∂/∂y denotes a depth-averaged
material time derivative. Expansion of d̄m/d̄t in (4.2) leads to a primitive depth-integrated
evolution equation for the solid volume fraction

∂m
∂t

+ ū
∂m
∂x

+ v̄
∂m
∂y

= −Dm
h

, (4.3)

in which the source term −Dm/h accounts for the effects of dilation or contraction on m.
A depth-averaged mass-conservation equation that describes evolution of ρh for the solid–

fluid mixture as a whole results from integrating (3.1) using Leibniz’ rule and the kinematic
boundary conditions (4.1) to find that

∫ h

0

(
∂ρ

∂t
+ ∇ · ρv

)
dz

= ρ

[
∂(hū)
∂x

− u(h)
∂h
∂x

+ ∂(hv̄)
∂y

− v(h)
∂h
∂y

+ w(h) − w(0)
]

+ h
d̄ρ

d̄t

= ρ

[
∂h
∂t

+ ∂(hū)
∂x

+ ∂(hv̄)
∂y

]
+ h

d̄ρ

d̄t
= 0. (4.4)
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Figure 7. Schematic of the change in the position of the virtual free surface at z = h in response to dilation or contraction of a
mixturewithρs/ρf = 2.7. Dashed lines indicate two-dimensional boundaries of isometric three-dimensional unit cells used to
calculate the solid volume fraction,m. For illustrative purposes, solid grains are assumed to be identical spheres with diameter
δ, and sphere centre spacings are chosen as either

√
3δ or

√
2δ. Spheres do not contact one another in either the dilated

or contracted state illustrated here. A flux of pore fluid (q) through the virtual free surface at z=h accompanies changes in m
caused by dilation or contraction. The idealized geometries used in this illustration exaggerate changes inm, q and h relative to
changes that would occur in debris-flowmaterials containing grains with diverse shapes and sizes.

The term h(d̄ρ/d̄t) can be recast by using the definition ρ = ρsm + ρf(1 − m) in conjunction with
(4.3) to obtain

h
d̄ρ

d̄t
= −(ρ − ρf)D. (4.5)

Substituting (4.5) into (4.4) yields the equation we use to describe depth-averaged mass
conservation of the solid–fluid mixture

∂h
∂t

+ ∂(hū)
∂x

+ ∂(hv̄)
∂y

= ρ − ρf

ρ
D. (4.6)

Interpretation of the source term in (4.6) is straightforward for special cases with ρf = 0 (which
implies that ρ and h describe attributes of only a granular phase) or with ρf = ρ (which implies
that ρ and h are uninfluenced by dilation or contraction because the debris effectively behaves
as a homogeneous, incompressible material). In the more-general case with 0<ρf <ρ, (ρ − ρf)D
describes the simultaneous effects of a source ρD and sink −ρfD as fluid mass replaces solid
mass in dilating debris beneath h. In this case, the surface h(x, y, t) coincides with neither the
fluid surface nor the solid surface, but rather with that of the virtual free surface described
above (figure 7).

Use of (4.6) also enables (4.3) to be recast in a form that accounts for simultaneous evolution of
m and h. Multiplication of (4.6) by m and multiplication of (4.3) by h, followed by addition of the
resulting equations, yields the depth-averaged equation we use to evaluate evolution of the solid
volume fraction

∂(hm)
∂t

+ ∂(hūm)
∂x

+ ∂(hv̄m)
∂y

= −ρf

ρ
Dm. (4.7)

An analogous equation can be obtained for the fluid volume fraction

∂[h(1 − m)]
∂t

+ ∂[hū(1 − m)]
∂x

+ ∂[hv̄(1 − m)]
∂y

= ρs

ρ
Dm, (4.8)

and addition of (4.7) and (4.8) reproduces (4.6). Thus, if (4.6) and (4.7) are satisfied, then (4.8) is
satisfied as well.
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The presence of finite source terms in (3.7) and (3.8), even for the special case with ρs = ρf = ρ,
reflects the fact that ρshm and ρfh(1 − m) are not conserved beneath the virtual free surface at
z = h(x, y, t). Rather, ρh is the quantity conserved beneath this surface, and ρh = ρshm or ρh =
ρfh(1 − m) are valid only if ρf = 0 or ρs = 0, respectively.

(b) Momentum balances
Depth-integrated equations for conservation of the x, y and z components of linear momentum
are exactly analogous to one another. Therefore, we illustrate integration of only the x component,
which is accomplished by using (3.2) and Leibniz’ rule to obtain the left-hand side terms

∫ h

0

[
∂(ρu)
∂t

+ ∂(ρu2)
∂x

+ ∂(ρuv)
∂y

+ ∂(ρuw)
∂z

]
dz

= ∂(ρhū)
∂t

− ρu(h)
∂h
∂t

+ ∂(ρhū2)
∂x

− ρu2(h)
∂h
∂x

+ ∂(ρhū v̄)
∂y

− ρu(h)v(h)
∂h
∂y

+ ρu(h) w(h) − ρu(0)w(0)

= ρ

[
∂(hū)
∂t

+ ∂(hū2)
∂x

+ ∂(hūv̄)
∂y

]
+ hū

d̄ρ

d̄t

= ρ

[
∂(hū)
∂t

+ ∂(hū2)
∂x

+ ∂(hūv̄)
∂y

]
− (ρ − ρf)Dū. (4.9)

In the second line of (4.9), the second, fourth, sixth, seventh and eighth terms cancel one another
through use of the kinematic boundary conditions (4.1). The third line of (4.9) results from
rearrangement of the remaining terms, and the fourth line of (4.9) results from employing (4.5) to
obtain the term −(ρ − ρf)Dū. This term describes a flux of x-momentum through the virtual free
surface at h(x, y, t) in response to dilation or contraction, but it does not imply that momentum
enters or leaves the debris flow. Rather, the term reflects the fact that momentum is not conserved
beneath h(x, y, t) unless D = 0 or ρf = ρs = ρ. Although (4.9) can be written in alternative forms that
lack D, we use the last line of (4.9) to illustrate the role of D and to clarify the relationship between
our equations and standard, depth-integrated momentum equations for flows of incompressible
material.

Depth integration of the x component of the right-hand side of (3.2) using Leibniz’ rule yields
∫ h

0

[
ρgx − ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

]
dz = ρgxh − ∂(τ̄xxh)

∂x
+ ∂(τ̄yxh)

∂y
− τzx(0), (4.10)

where gx is the x component of g, andτ̄xx and τ̄yx denote depth-averaged stress components.
(Recall that we define τxx and other normal stress components as positive in compression).
Except for the resisting basal shear traction τzx(0), all boundary terms introduced during depth
integration vanish from (4.10), because we assume a traction-free upper boundary at z = h and
rigid basal boundary at z = 0.

Substitution of (3.9) and (4.9) into (3.2) yields the depth-averaged x-component momentum-
conservation equation

ρ

[
∂(hū)
∂t

+ ∂(hū2)
∂x

+ ∂(hūv̄)
∂y

]
− (ρ − ρf)Dū = ρgxh − ∂(τ̄xxh)

∂x
+ ∂(τ̄yxh)

∂y
− τzx(0). (4.11)

The depth-averaged y-component momentum equation is obtained by interchanging ū and v̄ as
well as x and y in (4.11), yielding

ρ

[
∂(hv̄)
∂t

+ ∂(hv̄2)
∂y

+ ∂(hv̄ū)
∂x

]
− (ρ − ρf)Dv̄ = ρgyh − ∂(τ̄yyh)

∂y
+ ∂(τ̄xyh)

∂x
− τzy(0). (4.12)

The depth-averaged z-momentum equation can be written in an Eulerian form analogous to that
of (4.11) and (4.12), but it is useful to manipulate its left-hand side by employing (4.6) to obtain
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the Lagrangian form

ρh
d̄w̄

d̄t
= ρgzh + ∂(τ̄xzh)

∂x
+ ∂(τ̄yzh)

∂y
+ τzz(0), (4.13)

in which −(ρ − ρf)Dw̄ has been incorporated into ρh(d̄w̄/d̄t).
If shallow-flow scaling (detailed in §5) is used to justify neglect of ∂(τ̄xzh)/∂x + ∂(τ̄yzh)/∂y

in (4.13), then the equation reduces to a balance between the basal normal traction and the z
component of the effective weight per unit area of the moving debris, ρg′

zh [101]

τzz(0) = ρg′
zh, where g′

z = −gz + d̄w̄

d̄t
. (4.14)

Because z is reckoned positive upward (such that gz < 0), a positive acceleration (d̄w̄/d̄t> 0) adds
to the effects of −gz and thereby increases the effective weight of the debris and the basal normal
traction τzz(0). Lack of precise accounting for the effects of d̄w̄/d̄t is a fundamental limitation of
depth-averaged flow models, including ours. Here, in order to focus on the key new features of
our model, we employ the simplifying assumption d̄w̄/d̄t = 0, so that (3.13) reduces to

τzz(0) = −ρgzh = ρgh cos θ , (4.15)

where θ is bed slope angle (figure 6), g is the magnitude of g and g cos θ = −gz. In our companion
paper [46], we describe our method of accounting for the effects of spatial variations in θ on
flow dynamics.

(c) Basal pore pressure
We use depth integration and rational approximations to obtain a reduced pore-pressure
evolution equation that contains the basal pore pressure pb rather than pe. The first step entails
recasting (3.30) in terms of the total pore-fluid pressure, p = pe + ph, where ph = ρfgz(h − z) is the
hydrostatic pressure that balances the fluid weight. Next, we invoke shallow-flow scaling that
applies if H/L � 1 (see §5), where H is the characteristic thickness and L is the characteristic length
of a debris-flow surge (figure 6). This scaling indicates that ∂2p/∂z2 � ∂2p/∂x2, ∂2p/∂y2 because
∂2/∂z2 scales with 1/H2, whereas ∂2/∂x2 and ∂2/∂y2 scale with 1/L2. Analogous reasoning
indicates that ∂/∂x, ∂/∂y ∼ 1/L and ∂/∂z ∼ 1/H. Using these scales to identify and neglect terms
of order H/L or smaller in (3.30) yields the reduced equation

dp
dt

− k
αμ

∂2p
∂z2 − 1

α

∂(k/μ)
∂z

∂p
∂z

= dσ
dt

− γ̇ tanψ
α

. (4.16)

Another step involves use of the approximations w ≈ (z/h)dh/dt, u ≈ ū and v ≈ v̄ to recast the total
time derivatives in (4.16) as d/dt = d̄/d̄t + (z/h)(d̄h/d̄t)∂/∂z (cf. [28]). We make this substitution
and also the substitution ∂(k/μ)/∂z = 0 (because we assume that no material property varies as a
function of z), and thereby reduce (4.16) to

d̄p

d̄t
− k
αμ

∂2p
∂z2 = d̄σ

d̄t
+ z

h
d̄h

d̄t

∂(σ − p)
∂z

− γ̇ tanψ
α

. (4.17)

Depth integration of (4.17) is accomplished term-by-term using Leibniz’ rule and applying the
traction-free surface boundary conditions p(h) = σ (h) = 0, yielding

d̄(p̄h)

d̄t
− k
αμ

[
∂p
∂z

∣∣∣∣
z=h

+ ρfgz

]
= d̄(σ̄h)

d̄t
− (σ̄ − p̄)

d̄h

d̄t
− 2

√
ū2 + v̄2 tanψ

α
, (4.18)

where overbars denote depth-averaged variables, and 2
√

ū2 + v̄2/h is used as a linear
approximation of the depth-averaged shear rate magnitude. The term (k/αμ)ρfgz arises in (4.18)
from depth integration of the pore-pressure diffusion term in (4.17) and application of a zero-flux
basal boundary condition stipulating that the pore-pressure gradient at the bed is hydrostatic:
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[∂p/∂z]z=0 = −ρfgz. The term (σ̄ − p̄)d̄h/d̄t arises from depth integrating the term that includes
∂(σ − p)/∂z in (4.17) by parts. This term cancels some other terms and thereby reduces (4.18) to

d̄p̄

d̄t
− k
αμh

[
∂p
∂z

∣∣∣∣
z=h

+ ρfgz

]
= d̄σ̄

d̄t
− 2

√
ū2 + v̄2 tanψ

hα
. (4.19)

Equation (4.19) retains two pore-pressure variables, p and p̄, however, rather than the desired
single variable, pb.

To express (4.19) in terms of pb, we find substitutions for p̄ and [∂p/∂z]z=h that are consistent
with our assumption that m is uniform at all depths below z = h. This condition implies that ∇ · vs

and ∇ · q are not functions of z, further implying that ∂2p/∂z2 is not a function of z in (4.16) and
(4.17). With this restriction, we solve ∂2p/∂z2 = const. and employ the zero-flux basal boundary
condition ([∂p/∂z]z=0 = −ρfgz) and pressure-free surface boundary condition p(h) = 0 to find that
p(z, t) satisfies the quadratic equation

p(z, t) = pb

[
1 −

( z
h

)2
]

− ρfgzh
[

z
h

−
( z

h

)2
]

. (4.20)

This equation indicates how p(z, t) is represented by evolving values of the basal pressure pb(t)
and flow thickness h(t) (figure 8). Integration and differentiation of (4.20) show that the equation
also implies that

p̄ = 2
3 pb − 1

6ρfgzh (4.21)

and
∂p
∂z

∣∣∣∣
z=h

= −2pb

h
+ ρfgz. (4.22)

Substitution of (4.21) and (4.22) into (4.19) then yields an equation describing evolution of basal
pore-fluid pressure

d̄pb

d̄t
+ 3k
αμh2 [pb − ρfgzh] = 1

4
ρfgz

d̄h

d̄t
+ 3

2
d̄σ̄

d̄t
− 3

√
ū2 + v̄2 tanψ

hα
. (4.23)

To eliminate time derivatives on the right-hand side of (4.23), we estimate σ̄ as half the
basal total normal traction defined by (4.14), σ̄ = (1/2)ρgzh, and we use (4.4) and (4.6)
to obtain d̄(ρh)/d̄t = −ρh(∂ū/∂x + ∂v̄/∂y) and d̄h/d̄t = D[(ρ − ρf)/ρ] − h(∂ū/∂x + ∂v̄/∂y). These
substitutions, in addition to the substitution tanψ = m − [mcrit/(1 + √

N)] from (3.22), yield the
pore-pressure evolution equation we use in our model

d̄pb

d̄t
+ 3k
αμh2 [pb − ρfgzh]

= ρfgz

ρ

[
D(ρ − ρf)

4

]
− (ρf + 3ρ)gzh

4

[
∂ū
∂x

+ ∂v̄

∂y

]
− 3

√
ū2 + v̄2

hα

[
m − mcrit

1 + √
N

]
. (4.24)

Assessment of the depth-averaged value of N in (4.24) employs the depth-averaged shear rate
estimate γ̇ = 2

√
ū2 + v̄2/h, which assumes a linear bed-normal velocity profile.

A direct connection between pb and the dilation rate D can be established by using (3.28), (4.2),
and the pore-pressure distribution described by (4.20) to find that

D = − 2k
μh

[pb − ρfgzh]. (4.25)

This relationship provides closure to the model. It also shows that pb influences all of the other
dependent variables in the model, because each of the depth-averaged evolution equations (4.6),
(4.7), (4.11) and (4.12) contains a source term involving D. This influence can be viewed in a
different light by combining (4.25) with (4.22) and (3.26) to obtain

D = −qz|z=h, (4.26)

where qz|z=h is the specific discharge (positive upward) of fluid moving through the surface at
z = h during dilation or contraction (figure 7). Thus, in our model the dilation rate, excess basal
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Figure 8. Graph of equation (4.20), illustrating a sequence of instantaneous pore-pressure profiles that satisfy imposed
boundary conditions and the constraint ∂ 2p/∂z2 = const. as the normalized basal pore pressure pb/ρfgzh evolves. As
pb/ρfgzh→ 0, pore pressures become negative at heights 0< z< h, implying the existence of a tension-saturated state.

pore pressure and fluid flux through the virtual free surface are different manifestations of the
same phenomenon.

The relationships expressed by (4.25) and (4.26) are contingent on our assumption that all
debris, except that passing through the virtual free surface, remains fully saturated with liquid.
This assumption would be violated if debris were to dilate so rapidly that the liquid phase
cavitates. Energy requirements for creation of liquid–gas interfaces in porous media tend to
mitigate against this behaviour [55], but they do not preclude it. Our model does not attempt
to simulate air entry and instead enforces the restriction that pb ≥ 0, which, according to (4.25),
effectively limits D to the range D ≤ (2k/μ)ρfgz. The model implies that small negative fluid
pressures (i.e. tension-saturated zones) can develop internally as pb → 0, however (figure 8).

(d) Stress estimation
Our estimates of stress components in (4.11) and (4.12) assume that Coulomb friction in the
granular fraction of the debris is fully engaged if driving forces per unit area (ρgxh and ρgyh in
(4.11) and (4.12)) equal or exceed the sum of the other right-hand side terms in (4.11) and (4.12).
If ρgxh and ρgyh do not suffice to fully engage Coulomb friction, then the debris is static and
the stress state is indeterminate—as it is in classical limit-equilibrium methods of slope-stability
analysis. To obtain a formula for the fully engaged basal shear traction, we combine (3.31) with
(4.16) to model the Coulomb component of the traction, and then add a term derived from (3.25)
to account for depth-integrated viscous shear resistance of fluid in the volume fraction 1 − m. The
resulting formulae for the basal shear tractions in the x- and y-directions are

τzx(0) = ū√
ū2 + v̄2

{
[ρgh cos θx − pb] tan(φ + ψ) + (1 − m)μ

2ū
h

}
(4.27)

and

τzy(0) = v̄√
ū2 + v̄2

{
[ρgh cos θy − pb] tan(φ + ψ) + (1 − m)μ

2v̄
h

}
, (4.28)

where θx and θy are the x and y components of the slope angle θ , and 2ū/h and 2v̄/h are linear
estimates of the x and y components of the fluid shear rate. In (4.27) and (4.28), the leading factors
ū/
√

ū2 + v̄2 and v̄/
√

ū2 + v̄2 ensure that τzx(0) and τzy(0) resist motion in the direction given by
the vector sum of ū and v̄.
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Typically, the viscous terms in (4.27) and (4.28) account for little of the total basal shear
traction. For example, in a scenario with hydrostatic basal pore pressure and the values h = 1 m
and

√
ū2 + v̄2 = 10 m s−1, the Coulomb contribution to the basal shear traction is roughly (ρ −

ρf)gh cos θ ∼ 104 Pa, whereas the viscous contribution is roughly 0.1 to 1 Pa. Thus, in our model
the main effect of the viscous shear traction is to maintain finite basal flow resistance if complete
liquefaction occurs (i.e. if pb = ρgzh). Dissipation associated with inelastic grain collisions may
contribute additional flow resistance. For the sake of parsimony, we do not include this effect
in our model, although experiments indicate that the effect can be mimicked by treating φ as a
rate-dependent quantity [39].

We represent the solid- and fluid-phase contributions to the lateral stress gradient terms
∂(τ̄xxh)/∂x and ∂(τ̄yyh)/∂y by using the effective stress definition (3.7) and formulae derived from
this definition by Iverson & Denlinger [27]. This approach is predicated on the assumption that
the lateral normal stress components τxx and τyy are each proportional to τzz, leading to the
expressions

∂(τ̄xxh)
∂x

= κh
∂

∂x
(ρgzh − pb) + h

∂pb

∂x
(4.29)

and
∂(τ̄yyh)
∂y

= κh
∂

∂y
(ρgzh − pb) + h

∂pb

∂y
. (4.30)

In these equations, the terms involving gradients of ρgzh − pb account for lateral effective normal
stresses acting in the granular phase, whereas the terms h(∂pb/∂x) and h(∂pb/∂y) account for fluid
pressure contributions to the lateral stress. Additional terms can be added to (4.29) and (4.30) to
account for depth-averaged deviatoric fluid normal stresses (cf. [27]), but for plausible values of
the fluid viscosity μ these terms are negligible, and we exclude them here.

The granular components of the lateral normal stress terms in (4.29) and (4.30) involve a
lateral pressure coefficient κ , which has been discussed at length previously [27,102–104]. For
an ideal fluid, κ = 1 applies, and in this case (4.29) and (4.30) reduce to conventional forms used
in shallow-water theory. Similarly, if a fully liquefied state exists (i.e. pb = ρgzh), then (4.29) and
(4.30) reduce to the conventional shallow-water form. On the other and, for a uniform slab of
unliquefied Coulomb material that undergoes elongation or compression as well as basal sliding,
theory indicates that κ has one of two values given by (see [5], for a derivation)

κ = 2

[
1 ± [1 − cos2 φint(1 + tan2 φ)]1/2

cos2 φint

]
− 1, (4.31)

where φ is the basal friction angle and φint is the friction angle that describes Coulomb resistance
to internal deformation. These two friction angles may or may not be the same, but φ ≤ φint is
necessary to ensure that basal sliding accompanies internal deformation. The larger of the two
values of κ described by (4.31) is associated with compressive longitudinal deformation and
always exceeds 1, whereas the smaller κ value is associated with extensional deformation and
is commonly smaller than 1. Our model includes the option of using these variable κ values or, as
suggested by the findings of Gray et al. [103,105], setting κ = 1 as a simplifying approximation.

5. Normalization and dimensionless parameters
We normalize the depth-averaged model equations by using scales appropriate for a debris flow
of finite length L and thickness H (figure 6). Because downslope debris-flow motion is driven by
gravitational potential, the scale for the velocity components in the x- and y-directions is (gL)1/2,
whereas the scale for the z-direction velocity component is (gH)1/2 [102,106]. The scale (gH)1/2 also
applies for D, because D �= 0 indicates relative motion of solid and liquid phases in the z-direction.
The length-scale L divided by the downslope velocity scale yields the timescale for downslope
debris-flow motion, (L/g)1/2. The scale for ρ is the initial static debris bulk density ρ0 associated
with the initial solid volume fraction m0 : ρ0 = m0ρs + (1 − m0)ρf. The value m0 also serves as the
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scale for m. Finally, the scale for all depth-averaged stress components (τ̄xx, τ̄yy, τ̄zz, τ̄yx, τ̄zx, τ̄yz)
and for the basal pore pressure pb is ρ0gH. Use of these scales leads to definition of the following
dimensionless quantities, denoted by asterisks:

x∗ = x
L

, y∗ = y
L

, z∗ = z
H

, t∗ = t
(L/g)1/2 ,

u∗ = ū
(Lg)1/2 , v∗ = v̄

(Lg)1/2 , w∗ = w̄
(gH)1/2 , h∗ = h

H
,

D∗ = D
(gH)1/2 , m∗ = m

m0
, ρ∗ = ρ

ρ0
, p∗ = pb

ρ0gH

and (τ∗
xx, τ∗

yy, τ∗
zz, τ∗

yx, τ∗
zx, τ∗

yz) = τ̄xx, τ̄yy, τ̄zz, τ̄yx, τ̄zx, τ̄yz

ρ0gH
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

Substitution of (5.1) into (4.11) through (4.13) yields scaled forms of the momentum equations

ρ∗
[
∂(h∗u∗)
∂t∗

+ ∂(h∗u∗2)
∂x∗ + ∂(hu∗v∗)

∂y∗

]
− ε−1/2

(
ρ∗ − ρf

ρ0

)
D∗u∗

= ρ∗h∗ gx

g
+ ε

[
∂(τ̄∗

yxh∗)

∂y∗ − ∂(τ̄∗
xxh∗)
∂x∗

]
− τ∗

zx(0), (5.2)

ρ∗
[
∂(h∗v∗)
∂t∗

+ ∂(h∗v∗2)
∂y∗ + ∂(hv∗u∗)

∂x∗

]
− ε−1/2

(
ρ∗ − ρf

ρ0

)
D∗v∗

= ρ∗h∗ gy

g
+ ε

[
∂(τ̄∗

xyh∗)

∂x∗ −
∂(τ̄∗

yyh∗)

∂y∗

]
− τ∗

zy(0), (5.3)

and ε1/2ρ∗h∗ dw∗

dt∗
= ρ∗h∗ gz

g
+ ε

[
∂(τ̄∗

xzh∗)
∂x∗ +

∂(τ̄∗
yzh∗)

∂y∗

]
+ τ∗

zz(0), (5.4)

where

ε= H
L

(5.5)

is a fundamental length-scale ratio that is much smaller than 1 if the shallow-flow assumption is
satisfied [102,106].

The scaled mass-conservation equations (4.6) and (4.7) are

ρ∗
[
∂h∗

∂t∗
+ ∂(h∗u∗)

∂x∗ + ∂(h∗v∗)
∂y∗

]
= ε−1/2

(
ρ∗ − ρf

ρ0

)
D∗ (5.6)

and

ρ∗
[
∂(h∗m∗)
∂t∗

+ ∂(h∗u∗m∗)
∂x∗ + ∂(h∗v∗m∗)

∂y∗

]
= ε−1/2

(
− ρf

ρ0

)
D∗m∗. (5.7)

The scaled pore-pressure evolution equation (4.24) is

d̄p∗

d̄t∗
+ k(L/g)1/2

αμH2
3

h∗2

[
p∗ − ρf

ρ0

gz

g
h∗
]

= ε−1/2 D∗

4ρ∗
ρf

ρ0

gz

g

(
ρ∗ − ρf

ρ0

)
−
[

gz

g
h∗

4

(
∂u∗

∂x∗ + ∂v∗

∂y∗

)](
3ρ∗ + ρf

ρ0

)

− ε−1(αρ0gH)−1 3
√

u∗2 + v∗2

h∗

[
m0m∗ − mcrit

1 + √
N

]
. (5.8)

Finally, the scaled version of the closure equation (4.25) is

D∗ = ε1/2αρ0gH

(
k(L/g)1/2

αμH2

)[
p∗ − ρf

ρ0

gz

g
h∗
]

. (5.9)
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Table 2. Plausible ranges of values of dimensionless model parameters for diverse debris flows.

range of values if range of values if
parameter description H = 0.1 m, L= 100 m H = 10 m, L= 104 m

mcrit lithostatic critical-state solid

volume fraction

0.5–0.7 0.5–0.7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρf/ρ0 ratio of pore-fluid density to initial

(lithostatic) debris bulk density

0.4–0.7 0.4–0.7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ constant-volume friction angle of

granular debris in contact

with bed

0.5–0.8 rad 0.5–0.8 rad

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k(L/g)1/2

αμH2
ratio of timescales for downslope

debris-flowmotion and

pore-pressure diffusion

10−7–104 10−10–101

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αρ0gH normalized debris compressibility 10−2–1 10−1–10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .μ

ρ0H(gL)1/2
reciprocal Reynolds number for

downslope motion of pore fluid

<10−4 <10−7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The shallow-flow assumption ε� 1 provides a basis for comparing the relative magnitudes of
terms in these scaled equations. The stress gradient terms in (5.2)–(5.4) are of order ε1, and
consequently they may be negligible in many circumstances. The bed-normal acceleration term
involving d̄w∗/d̄t∗ in (5.4) also is commonly negligible, because it is of order ε1/2. All terms that
contain D∗ are effectively of order ε0, because the factors ε1/2 and ε−1/2 in these terms cancel
one another if (5.9) is substituted into (5.2), (5.3) and (5.6)–(5.8). Thus, no term containing D∗ can
be neglected.

Although shallow-flow scaling indicates that stress gradient terms are small, modelling surge-
like motion of debris flows requires retention of the normal stress gradient terms ∂(τ∗

xxh∗)/∂x∗
and ∂(τ∗

yyh∗)/∂y∗ in (5.2) and (5.3) [102]. Our computations neglect all other terms of order ε,
however—thereby distinguishing our approach from that used in some previous debris-flow and
avalanche models [27,29,101]. In our model, the terms containing D∗ play a more essential role,
and we aim to evaluate this role without juxtaposing unnecessary complications.

The scaled model equations contain relatively few dimensionless parameters. Three of these
parameters, gx/g, gy/g and gz/g, reflect the extrinsic influence of the local slope angle and
orientation, which are independent of the properties of the debris flow. The remaining six
parameters express the influence of intrinsic debris-flow properties:

mcrit,
ρf

ρ0
,

k(L/g)1/2

αμH2 , αρ0gH, φ,
μ

ρ0H(gL)1/2 . (5.10)

The first four of these parameters appear explicitly in equations (5.2) through (5.9), whereas the
last two parameters are contained implicitly in (5.2) and (5.3) as a result of the boundary shear
tractions specified in (4.27) and (4.28). Table 2 summarizes the spectrum of plausible values of
the six parameters in (5.10) for both small-scale debris flows (with H = 0.1 m and L = 100 m) and
large-scale flows (with H = 10 m and L = 104 m).

The parameter k(L/g)1/2/αμH2 plays the most important role in affecting model predictions
of flow behaviour, because it has values that can vary by many orders of magnitude, even in
flows of fixed size (table 2). (Values of the parameter μ/ρ0H(gL)1/2 also can range widely, but they
are universally small, indicating that viscous shearing plays a relatively minor role in resisting
motion.) Model predictions also depend strongly on mcrit, because the value of this parameter
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establishes whether the initial state of debris with m = m0 is dilative (ψ > 0 if m0 >mcrit) or
contractive (ψ < 0 if m0 <mcrit). The sign of m0 − mcrit consequently determines the sign of pore-
pressure changes that occur during the first stages of downslope debris motion. Debris-flow
size also has an important influence, because as flow size increases, values of k(L/g)1/2/αμH2

decrease, whereas those of αρ0gH increase. In summary, the behaviour of model predictions
depends largely on topography, initial conditions and the value of k(L/g)1/2/αμH2.

The parameter k(L/g)1/2/αμH2 can be viewed as a time-scale ratio, in which (L/g)1/2 is the
timescale for downslope debris-flow motion and αμH2/k is the timescale for pore-pressure
relaxation to a hydrostatic state (cf. [54]). Within these timescales, the greatest source of
variability arises from the pore-pressure diffusivity, k/αμ, which depends chiefly on the grain-size
distribution and degree of debris dilation. A very broad range of diffusivities (10−7–102 m2 s−1)
results from considering the full ranges of plausible values of k (10−13–10−7 m2), α (10−7–10−4 Pa)
andμ (10−3–10−1 Pa-s) for debris ranging from mud-rich and gravel-poor to gravel-rich and mud-
poor. The typical range of k/αμ values may be considerably smaller, however. Values of k/αμ
determined experimentally for quasi-static debris-flow materials with compositions dominated
by mud or by sand and gravel have ranged only from about 10−7 to 10−4 m2 s−1 [5,61,68,72].

6. Discussion
Our model comprises a set of five simultaneous partial differential equations describing coupled
evolution of ū(x, y, t), v̄(x, y, t), h(x, y, t), m(x, y, t) and pb(x, y, t). A concise recapitulation of these
equations and ancillary constitutive formulae is provided in our companion paper [46].

Application of our model typically entails simulating debris-flow motion that begins from a
statically balanced initial state with ū = v̄ = 0. In such stable states, basal pore pressures pb(x, y, t)
are by definition too small to satisfy (4.27) or (4.28) together with (4.29) or (4.30). Motion
can then be triggered either by gradually increasing pb (simulating the effect of rainfall or
snowmelt infiltration), gradually reducing the basal friction angle, φ (simulating the effects of
rock weathering or decay of roots that help bind soil), gradually changing the slope geometry
(simulating erosion or human intervention) or rapidly changing g (simulating earthquakes). In
all scenarios, motion begins when and where an infinitesimal force imbalance first develops. In
this way, the model simulates the onset of slope instability and a transition to dynamic behaviour
that may or may not entail rapid flow—contingent on dilatancy and pore-pressure feedback.

The model’s representation of flow dynamics can be compared with that of some better-
established models. For example, the depth-averaged evolution equations reduce to a form like
that of the Savage–Hutter [102] granular avalanche model if the dilatancy, compressibility and
pore-fluid viscosity and density are zero, implying that the restrictions D=0, m = m0 = mcrit and
pb=0 are enforced. On the other hand, if the restrictions D = 0, m = m0 = mcrit, ρ = ρf and φ=0
apply, the equations provide a conventional description of shallow-water flow. In this case, the
debris behaves as an incompressible liquid, and the pore-pressure evolution equation (4.24)
reduces to the hydrostatic balance pb = ρgzh. Moreover, the longitudinal stress gradients given
by (4.29) and (4.30) reduce to ρgzh(∂h/∂x) and ρgzh(∂h/∂y), and the basal shear tractions given by
(4.27) and (4.28) contain only viscous components that represent fluid effects. In shallow-water
models, these basal tractions can be approximated in a variety of other ways in an effort to account
for the effects of turbulence.

Behaviour that temporarily or locally mimics shallow-water flow can occur as D, m and
ρ evolve in our model, provided that k(L/g)1/2/αμH2 � 1 and m<meq apply. In this case,
contractive shear deformation produces a persistent state of near-liquefaction because debris-
flow motion occurs much more rapidly than pore-pressure relaxation. A caveat, however, is
that elongation and thinning of a moving debris flow can reduce the effective value of H,
thereby increasing the speed of pore-pressure relaxation in proportion to the change in H2.
This effect causes frictional resistance to increase where the flow thickness becomes small. As
thickness approaches zero at debris-flow snouts, for example, pore pressure dissipates readily
and increased friction develops.
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Reduction of pore pressure and consequent growth of flow resistance also can result from
increased shear rates, because increased shear rates reduce the value of meq through the action
of dilatancy. Indeed, the order-ε−1 term on the right-hand side of (5.8) indicates that a lowest
order, steady-state approximation of the physical processes represented in our model consists
of a balance between the effects of dilatancy and generation of excess basal pore pressure. This
balance can be expressed in dimensional terms as

pb − ρfgzh = −μh
k

(ū2 + v̄2)1/2[m − meq]. (6.1)

If m<meq applies, then the steady state defined by (6.1) implies that pb − ρfgzh< 0, indicating
that the effects of positive dilatancy reduce pore-fluid pressure and help stabilize motion. Faster
motion promotes pore-pressure reduction not only by increasing the magnitude of (ū2 + v̄2)1/2

but also by reducing meq—as demonstrated in idealized experiments [82]. According to (6.1),
the propensity for evolution of m to stabilize motion can also manifest itself during contractive
behaviour with m<meq and pb − ρfgzh> 0, because faster motion reduces meq and thereby
reduces pb.

In another special case, the model equations provide an approximate description of
consolidation of quasi-static debris-flow deposits. In this case, all velocities vanish, and the
pore-pressure evolution equation (4.24) reduces to

d̄pb

d̄t
+ 3k
αμh2 (pb − ρfgzh) = ρfgzh

4
ρ − ρf

ρ

[
− 2k
μh2 (pb − ρfgzh)

]
, (6.2)

which employs the expression for D given by (4.26). Equation (6.2) has a particularly simple
solution if h and ρ are assumed to be constants, as is typically assumed in soil consolidation
modelling

pb − ρfgzh
pb(0) − ρfgzh

= exp
{ −kt
αμh2

[
3 +

(
αρfgzh

2

)(
ρ − ρf

ρ

)]}
. (6.3)

This solution describes exponential relaxation of the basal pore pressure towards the hydrostatic
equilibrium value ρfgzh, and it satisfies the initial condition pb = pb(0). The relaxation coefficient
in (6.3) has a complicated form, but in general (αρfgzh/2)[(ρ − ρf)/ρ] � 3 applies for all but the
largest debris flows. Therefore, a useful approximation of (6.3) is

pb − ρfgzh
pb(0) − ρfgzh

≈ e−3kt/αμh2
. (6.4)

In this relationship, the basal pore-pressure relaxation time equals one-third of the pore-pressure
diffusion timescale, αμh2/k. In a depth-averaged sense, this exponential decay approximates
pore-pressure relaxation predicted by classical soil consolidation theory (figure 9). As excess basal
pore pressures relax, quasi-static debris becomes progressively more rigid.

The pore-pressure relaxation timescale has another important implication, which arises from
its relationship to the relaxation rate of m. The relaxation m → meq has a characteristic time-
scale 1/meqγ̇ that typically equals a few seconds or less if pore pressure is absent. By contrast,
pore-pressure relaxation in the absence of dilatancy has a characteristic timescale αμh2/k that
typically ranges from a few minutes to many months. Owing to these disparate timescales and the
strong coupling of m and pb, the relaxation m → meq can proceed only as rapidly as the relaxation
pb → ρfgzh permits. In this way, the model equations mirror experimental findings demonstrating
that coupled evolution of pore space and pore-fluid pressure plays a dominant role in regulating
debris-flow dynamics [16,65].

Complications that are not addressed by the model include several related to evolution of m.
For example, dm/dt< 0 might occur near the surface of a debris flow while dm/dt> 0 occurs
near the bed, yielding a commensurately variable pore-pressure response. Moreover, the value
of mcrit might evolve in response to a variety of factors identified in quasi-static soil tests [10,23,
108,109]. Our aim is to omit rather than include complicating factors wherever possible, however,
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Figure 9. Graphs comparing the prediction of pb(t) given by equation (6.4)with the prediction given by an exact solution of the
pore-pressure diffusion equation ∂p/∂ t = (k/αμ)∂ 2p/∂z2 for the initial condition p(0)= pb(0) and boundary conditions
[∂p/∂z]z=0 = 0 and pz=h = 0 [107, p. 97]; [74, p. 409]. Owing to the finite time required for significant pore-pressure
relaxation to penetrate diffusively to the bed, the diffusion equation yields predictions that lag behind those of (6.4) by a
normalized time offset roughly equal to kt/αμh2 = 0.1.

and we therefore assume that mcrit is constant. In our companion paper, we show that such a
parsimonious model can make useful predictions [46].

7. Conclusion
We have derived a depth-averaged debris-flow model aimed at seamlessly simulating all stages
of flow behaviour, from initiation to post-depositional debris consolidation. The model formalizes
the hypothesis that the evolving debris dilation rate, coupled to evolution of pore-fluid pressure,
plays a primary role in regulating debris-flow dynamics. The model’s representation of this role
involves three key postulates. One postulate is that changes in the solid volume fraction m result
from the interaction of the depth-averaged shear rate, dilatancy and effective stress. In turn, the
evolving dilatancy angle ψ obeys tan ψ = m − meq, where the equilibrium solid volume fraction
meq depends on the ambient stress state and shear rate. The second key postulate, interrelated
with the first, is that a Darcy drag formula describes the effect of solid–fluid interactions on the
relaxation of m towards meq. The third postulate is that flow resistance is dominated by basal
Coulomb friction, which is affected by dilatancy and by pore-fluid pressure mediated by Darcy
drag. The Darcy and Coulomb postulates are consistent with behaviour observed previously
in replicable experiments [16,61,65]. Therefore, relationships involving dilatancy represent the
primary new hypothesis embodied by the model. The fact that dilatancy produces a leading-order
effect in the normalized model equations enhances the prospects for conclusive model tests.

The normalized model equations contain only one dimensionless parameter that varies
significantly among debris flows with differing compositions and sizes, k(L/g)1/2/αμH2.
Therefore, model predictions require little calibration. A typical debris-flow simulation might
employ values of other dimensionless model parameters estimated as φ ≈ 0.7, ρf/ρ0 ≈ 0.6,
mcrit ≈ 0.6, αρ0gH ≈ 0.1 and μ/ρ0H(gL)1/2 ≈ 10−6. If these values are fixed, then variations in
predicted debris-flow behaviour depend only on variations in the value of k(L/g)1/2/αμH2 and
on the initial value of m − mcrit (in addition to extrinsic factors such as the geometry of the
debris-flow source area and path). In stringent model tests, such as those performed in flume
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experiments, values of these parameters can be constrained by independent measurements of
material properties [16,65]. In scenarios that lack such constraints, the initial value of m − mcrit
and the value of k(L/g)1/2/αμH2 may be used as calibration parameters or as stochastic variables
in probabilistic forecasting.

The key role played by the time-scale ratio k(L/g)1/2/αμH2 implies that debris-flow mobility
predicted by our model involves inherent scale-dependence. For flows of varying size but
fixed aspect ratio H/L, the motion timescale (L/g)1/2 grows as L1/2, whereas the pore-pressure
relaxation timescale grows as H2. Thus, large flows can retain high pore pressures longer than
can small flows of similar composition. Consequent reduction of effective basal friction can help
explain the extraordinarily high mobility exhibited by many large debris flows [5].

The structure of our model implies that if contractive initial conditions with m<mcrit exist,
then slope failure leads to positive pore-pressure feedback, making partial liquefaction and
runaway debris-flow motion almost inevitable. On the other hand, dilative initial conditions with
m>mcrit lead to negative pore-pressure feedback. This feedback may lead to slow or intermittent
landslide motion [19], but it does not preclude debris-flow initiation. According to our model,
however, debris-flow initiation that commences with dilative deformation is a relatively gradual
process that does not involve abrupt liquefaction and runaway behaviour. Progressive destruction
of soil aggregates during the early stages of shearing can promote this type of flow initiation by
causing a transition from dilative to contractive behaviour [10]. This complication, as well as
complications due to grain-size segregation and entrainment of boundary material, remains to be
incorporated in our model.
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